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Abstract 

Accurate numerical modeling of complex, multi-dimensional shock 

propagation is needed for many Department of Defense applications.  A three-

dimensional code, based upon E.F. Toro’s weighted average flux (WAF) method 

has been developed, tested, and validated.   Code development begins with the 

introduction and application of all techniques in a single dimension.  First-order 

accuracy is achieved via Godunov’s scheme using an exact Riemann solver.  

Adaptive techniques, which employ approximate solutions, are implemented to 

improve computational efficiency.  The WAF method produces second-order 

accurate solutions, but introduces spurious oscillations near shocks and contact 

discontinuities.  Total variation diminishing (TVD) flux and weight limiting 

schemes are added to reduce fluctuation severity.  Finally, the fully developed 

one-dimensional code is validated against experimental data, and extended into 

two and three dimensions via dimension-splitting techniques.     
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DEVELOPMENT OF A THREE-DIMENSIONAL AIR BLAST 

PROPAGATION MODEL BASED UPON THE WEIGHTED AVERAGE 

FLUX METHOD 

 

 

1. Introduction 

1.1. Motivation 

 The shock wave is an important natural phenomenon which commands 

attention.  Accordingly, accurate and efficient numerical modeling of 

compressible, inviscid, time-dependent flow is a major branch of computational 

fluid dynamics.  Analysis of complex, multi-dimensional shock propagation is an 

application of this numerical modeling and is needed for many Department of 

Defense (DoD) applications. 

1.2. Background 

 Fluid dynamics is governed by a system of non-linear, hyperbolic partial 

differential equations which dictate conservation laws of mass, momentum, and 

energy.  In 1952, Courant, Isaacson, and Rees introduced a first-order accurate 

scheme to solve these equations by finite differences.  In 1959, Sergei K. Godunov 

presented an extension to this scheme which resolved a computational domain as 

a piecewise constant distribution of the conserved variables in a series of 
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boundary value problems (Godunov, 1959:1187).  These boundary value 

problems, known as Riemann problems, are solved exactly to satisfy the 

governing conservation laws and determine numerical fluxes of mass, momentum, 

and energy at each boundary.  Godunov’s method then applies these boundary 

fluxes to calculate the conserved variable values at either side of the boundary, 

which serve as conditions to solve Riemann problems, forward in time, as 

required.    

Due to the non-linearity of the conservation laws, numerical iteration is 

required to obtain exact solutions to the Riemann problems.  Since the 

introduction of Godunov’s method, several approximate Riemann solvers have 

been developed that predict solutions without requiring computationally costly 

iteration.  Unfortunately, Godunov’s method, implemented with exact or 

approximate Riemann solvers, provides only first-order accuracy, making it 

unsuitable for application to practical problems where well-resolved solutions 

require fine meshes.  Specifically, first-order schemes often result in smeared 

solutions at discontinuities, such as shock fronts, and predict slow convergence to 

these solutions (Toro, 1999:213). 

   In his text, Riemann Solvers and Numerical Methods for Fluid 

Dynamics, 2d Edition, E.F. Toro presents high-resolution, second-order 

techniques to remedy the shortcomings associated with first-order methods.  

Specifically, Toro’s techniques permit determination of more accurate numerical 
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fluxes at each boundary than Godunov’s method allows.  These fluxes are 

calculated by analyzing the wave structure of the Riemann problem to determine 

a weighted average of the flux vectors at the boundary.  While Toro’s weighted 

average flux (WAF) method improves accuracy, it also introduces false 

fluctuations at discontinuities, such as shock fronts.  Toro ultimately applies total 

variation diminishing (TVD) techniques to limit the flux weights and resolve 

these discontinuities in the regions of interest.  Finally, Toro’s methods may be 

applied to solve single or multi-dimensional problems (Toro, 1999:490).   

1.3. Problem 

 The principal endeavor of this research is the development of a three-

dimensional hydrodynamic shock code to solve the Euler conservation equations 

based upon the weighted average flux method (Toro, 1999:492).  The secondary 

objective applies the developed code to model air blast propagation in one, two, 

and three dimensions.   

1.4. Scope 

 The developed computational model is limited to modeling air blast under 

ideal conditions. 

1.5. Assumptions and Limitations 

 The numerical hydrodynamics code assumes air behaves as an ideal gas 

with a constant ratio of specific heats (γ = 1.4).  This assumption limits 
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application of the code to low and intermediate pressure regions where peak 

pressures remain below 100 psi (690 kPa).  Modeling of air blast propagation 

assumes that the atmosphere is homogeneous, with sea level properties, up to 

5000 feet (Glasstone and Dolan: 103).  The model also assumes the earth behaves 

as an ideal surface which is flat and reflects all incident energy. 

1.6. Approach 

 Accurate and efficient one-dimensional numerical hydrodynamics modeling 

serves as the basis for code development in two and three dimensions.  An 

algorithm to solve a single Riemann problem for the Euler conservation 

equations, exactly, was developed first.  Next, a Godunov’s method algorithm 

applied the exact Riemann solver to an entire computational domain, providing 

first-order accuracy.  Godunov’s algorithm then incorporated three approximate 

Riemann solvers, in order to maximize computational efficiency.  Application of 

Toro’s WAF method followed and provided second-order accurate solutions, 

while four TVD weight limiters were incorporated to reduce false fluctuations at 

discontinuities.  During each step of code development, numerical values of the 

physical variables of density, material speed, and pressure, as well as internal 

energy, were verified against five documented shock tube tests using a fine mesh 

of 10001 points over a domain length of one meter for the exact Riemann solver, 

and a coarse mesh of 200 points for each of the Godunov method algorithms.  

Finally, the second-order accurate Godunov WAF TVD model was validated 
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against the Army Research Laboratory (ARL) 57cm shock tube test using a mesh 

of 5000 points over 50 meters.   

Following validation of the one-dimensional model, the code was extended 

into two and three dimensions by dimension splitting techniques.  The two and 

three-dimensional codes were verified against mild cylindrical and spherical shock 

tests presented by Toro. 
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2. Fluid Dynamics Theory 

2.1. Governing Equations 

 The laws of conservation of mass, momentum, and energy as applied to 

fluid motion are summarized, comprehensively, by a set of non-linear partial 

differential equations known as the Navier-Stokes equations.  For mathematical 

and experimental reasons, the boundary conditions which accompany these 

computationally precise equations dictate solution procedures which are often 

inefficient and impractical.  However, application of some simplifying 

assumptions reduces these complex equations to a simpler set of partial 

differential equations, commonly referred to as the Euler equations (Chorin and 

Marsden, 1990:34). 

2.2. Simplifying Assumptions 

 The Euler equations result from the assumptions that viscosity, heat 

conduction, and body forces are negligible for a compressible medium.  If these 

assumptions are maintained by the computational model that simulates shock 

propagation through air and shock reflection at a surface, then the Euler 

equations may be justifiably applied to this model.  Therefore, an analysis of 

viscosity, heat conduction, and body forces within the air, at the boundary 

between the air and surface, and at the surface where shock interaction occurs is 

necessary.  
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The computational model assumes a homogeneous atmosphere with sea-

level properties.  Regarding air located far from a boundary, this assumption 

implies negligible density, velocity, and temperature gradients exist, and justifies 

ignoring body forces, viscosity, and heat conduction, respectively. 

The model also assumes that the earth behaves as an ideal surface that is 

flat and reflects all incident energy, which allows heat conduction between the air 

and the surface to be ignored.  Furthermore, shocks propagating over this 

smooth, flat surface exert high pressures and inertias over a physical domain that 

is large in comparison to the thin surface boundary.  Therefore, variations in 

pressure normal to the surface are negligible within the boundary layer, which 

indicates the pressure distribution at the surface results from the flow above the 

boundary.  Hence, viscosity at the boundary between the air and surface can also 

be ignored.  Finally, because viscosity and heat conduction may be ignored 

within air located far from a boundary, and at the boundary between the air and 

the ideal surface, the air at these locations is characterized as inviscid and 

adiabatic (Wittig, 1999:5).   

Examination of air located at the shock front indicates this air is neither 

inviscid nor adiabatic.  Physically, a shock front represents a thin region where 

the properties of density, pressure, and material velocity change rapidly.  The 

temperature and velocity gradients incurred at the front imply viscosity, heat 

transfer, and entropy cannot be ignored, and the simplifying assumptions that 



 

8 

allow reduction of the Navier-Stokes equations to the Euler equations are 

effectively threatened.  However, if the physical shock front is represented, 

mathematically, as a discontinuity, and the width of this discontinuity is 

assumed to be small with respect to the domain represented by the 

computational model, and the second law of thermodynamics sufficiently 

recognizes the discontinuity and predicts physically correct behavior at the shock 

front, then viscosity and heat conduction may be neglected at the front, as an 

approximation.  In fact, smooth solutions obtained from the Navier-Stokes 

equations compared to discontinuous solutions obtained by applying simplifying 

assumptions are nearly indistinguishable (LeVeque, 1992:9).             

The assumptions that air viscosity, heat conduction, and body forces are 

negligible justify applying the Euler equations to the developed computational 

model. 

2.3. The Euler Equations 

 The time-dependent Euler form of the conservation equations of mass, 

momentum, and energy may be written in compact vector notation as 

 ( ) ( ) ( )+ + + =U F U G U H U 0t x y z  (2.1) 

where U is a column vector of conserved variable densities and F(U), G(U), and 

H(U) represent fluxes of conserved variables in the x, y, and z directions, 

respectively, as 
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. (2.3) 

Vectors are denoted by boldface letters.  The subscript t in equation (2.1) 

represents a temporal partial derivative, while subscripts x, y, and z symbolize 

spatial partial derivatives (Toro, 1999:3).  

 Two sets of variables, conserved and primitive, are used in the 

conservation equations, and there exists some freedom when choosing variables to 

describe the flow under consideration.  Conserved variables represent conserved 

quantities of mass, momentum, and energy, while the primitive variables of 

density, velocity, and pressure can be easily measured and are often imposed by 

the domain of the problem.  Algebraic simplification and application of the ideal 

gas equation of state, discussed in Section 2.4, allows the primitive variables to 

be expressed in terms of the conserved variables, or vice versa, where 
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In a single dimension, assuming uniform flows in the y and z directions, 

equation (2.1) may be written  

 + ( ) =U F 0xt U  (2.5) 

where      

 2,

ρρ
ρ ρ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

U F

u

u u p

E u(E p)

. (2.6) 

Similarly, a two-dimensional analysis where uniform flow exists in the z-direction 

requires solving 

 ( ) ( )+ + =U F U G U 0t x y  (2.7) 

where 

  

 
2

2, ,

( ) ( )

ρ ρρ
ρρ ρ

ρ ρ ρ
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 Examination of the single or multi-dimensional Euler equations reveals, in all  

cases, that the number of unknown variables exceeds the number of equations by 

one.  Therefore, an appropriate thermodynamic equation of state relating two or 

more physical quantities within the medium is required to guarantee a solution 

for all unknown variables. 

2.4. Thermodynamic Considerations  

 The energy density, E, included in equation (2.2) is expressed 

 2 2 21= + + +
2
ρ ρE (u v w ) e  (2.9) 

where e is specific internal energy.  Assuming the medium within the 

computational model behaves as a calorically ideal gas, then the density and 

pressure within the medium are related by the ideal gas equation of state (EOS): 

 = ρp RT  (2.10) 

where R is the universal gas constant and T is the temperature.  If the ideal gas 

EOS is assumed, then it follows that internal energy is a function of temperature 

alone, or   

 = ve c T  (2.11) 

where cv ,the specific heat capacity at constant volume, is a constant.  

Furthermore,  
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 − =p vc c R  (2.12) 

where cp ,the specific heat capacity at constant pressure, is also constant.  

Defining the ratio of specific heats,γ , as 

 γ p

v

c
c

≡  (2.13) 

and substituting equations (2.11) and (2.12) into equation (2.10) yields the 

relationship 

 
ρ γ

=
−
pe

( 1)
. (2.14) 

Substitution of (2.14) into (2.9) presents a relationship for E in terms of the 

primitive variables andρ,u,v,w, p and provides necessary closure to the system of 

Euler conservation equations (Toro, 1999:13). 
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3. Exact Riemann Solver Development 

3.1. The Riemann Problem for the Euler Equations 

The Riemann problem (RP) for the one-dimensional time-dependent Euler 

conservation equations is the initial value problem (IVP) 

 2

( )

, ,

( )

ρρ
ρ ρ

⎫+ = ⎪⎪⎪⎪⎡ ⎤ ⎪⎡ ⎤ ⎪⎢ ⎥⎢ ⎥ ⎪⎬⎢ ⎥⎢ ⎥ ⎪= = +⎢ ⎥⎢ ⎥ ⎪⎪⎢ ⎥⎢ ⎥ ⎪⎢ ⎥⎢ ⎥ ⎪+ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎪⎣ ⎦ ⎭

U F U 0

U F

t x

u

u u p

E u E p

 (3.1) 

with initial conditions 

 
L(0)

R

0
( 0) ( )

0

⎧ <⎪⎪= = ⎨⎪ >⎪⎩

�x
x, x

�x

U
U U

U
. (3.2) 

The domain of interest in the x-t plane is the set of points (x, t) where 

−∞ < < ∞x and t > 0.  In practice, x varies in a finite interval L Rx ,x[ ]  around the 

point x = 0.  Additionally, the vector of primitive variables at a specified time 

= ( )ρW T,u,p is frequently used when solving the RP, as opposed to the vector U 

of conserved variables.  Therefore, the RP is the IVP for (3.1) consisting of 

constant data states LW and RW  left and right of a discontinuity located at x = 

0. 

Physically, as applied to the Euler equations, the RP represents a 

simplified shock tube problem.  In this problem, two stationary gases are initially 

separated by a boundary.  Removal of this boundary generates a nearly centered 
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system of three waves that typically consists of a rarefaction wave, contact 

discontinuity, and a shock wave (Toro, 1999:117; Ben-Artzi, 2003:98).    

3.2. The Riemann Problem Wave Structure 

Figure 3.1 depicts one example of a Riemann problem wave structure.  

Solutions to the system of partial differential equations in the IVP (3.1) produce 

three wave families associated with the eigenvalues listed above each wave 

number in Figure 3.1.  For each eigenvalue, u is the material velocity and a 

represents the local speed of sound. 

 Figure 3.1.  Riemann Problem Wave Structure 

As indicated in the figure, the wave families effectively separate the RP, from left 

to right, into four regions L *L *R R, , , andW W W W .  Although the left and right 

most states are known based on the initial conditions specified in the RP, 
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information about the star region is necessary in order to fully define the RP.  

Solutions dictate waves one and three may be classified as shocks or rarefactions, 

while wave two is always a contact surface wave.  Traditionally, a rarefaction is 

represented as a pair of rays, with a head and tail, while shocks are depicted by a 

single, solid line.  Until the full classification of the outer waves as shocks or 

rarefactions occurs, both waves are portrayed as rarefactions.  Consequently, 

accurate identification of waves one and three as shocks or rarefactions must 

occur before full definition of the RP, and the method of characteristics provides 

the ability to accomplish this identification. 

3.3. The Method of Characteristics 

 Characteristic vectors, often called eigenvectors, provide straight-line 

solutions to a system of linear differential equations.  Analysis of these vectors 

facilitates generation of characteristic fields, which provide qualitative 

information about the behavior of a system of equations (Blanchard, 2002:258).  

Unfortunately, the Euler equations are non-linear, resulting in discontinuities 

where characteristics cross (Wittig, 1999:14).  Nevertheless, the method of 

characteristics generates useful qualitative information and accurately identifies 

RP waves as shocks, rarefactions, or contact surface waves.  This classification, 

coupled with known information from the left and right states specified by the 

initial conditions facilitates solution for variables in the star region and, 

ultimately, completes solution for variables in all four RP regions.  
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 Recall that properties of density, material velocity, and pressure are 

mathematically discontinuous for a shock wave.  Conversely, a rarefaction wave 

is a smooth wave region where solutions for the same properties vary 

continuously between the head and tail.  A characteristic vector field associated 

with a right moving rarefaction is depicted in Figure 3.2.  The divergent 

characteristics within the fan and on either side of the wave indicate pressure and 

density decrease across the expansion fan from head to tail, while material 

velocity also decreases.  A left moving rarefaction exhibits identical behavior, 

except for material velocity, which increases across the expansion fan from head 

to tail.  In both cases, the speed of the head represents the speed of the 

rarefaction wave. 

 Figure 3.2.  Characteristic Field of a Right Moving Rarefaction  

 Figure 3.3 depicts a characteristic vector field associated with a left 

moving shock. Along the line where characteristics cross, solutions are 

discontinuous.  Accordingly, properties of density, material velocity, and pressure 

experience an instantaneous jump across the wave from head to tail.  
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Graphically, the head and tail are conventionally removed and the shock wave is 

represented by a bold, solid line.  Finally, the speed of the head does not 

represent shock speed, as the shock wave cannot be classified characteristic.  This 

shock speed will be analyzed later.    

 Figure 3.3.  Characteristic Field of a Left Moving Shock 

 Recall the center wave in the RP structure is always a contact surface 

wave.  Figure 3.4 shows the characteristic vector field is parallel to the contact 

surface. 

 Figure 3.4.  Characteristic Field of a Right Moving Contact Surface 

In the context of the RP, both pressure and material velocity are constant across 
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wave two as 

 L R

L R

= =
= =

* * *

* * *

p p p ,
u u u ,  (3.3) 

while density experiences a jump across the contact surface and  

 L Rρ ρ≠ *  * . (3.4) 

Classification of waves one and three as shocks or rarefactions, together 

with primitive variable information from states LW and RW  provides necessary 

information to solve for *LW  and *RW and fully define the RP.  The exact 

Riemann solver (ERS) provides the method to accomplish this task. 

3.4. The Exact Riemann Solver (ERS) 

3.4.1. Solution Strategy 

  As a pedagogical exercise, Toro applies the ERS to a simplified shock tube 

problem.  Specifically, the shock tube is treated as a single RP, with a diaphragm 

separating constants states left and right of the boundary.  Methods for 

determining the values of primitive variables in the star region are presented.  

Following solution for these variables in all four RP states, primitive variable 

values are calculated at a user specified number of points within the shock tube.  

Toro refers to this second step as sampling.  While this method is a simplified 

approach to shock tube modeling, the solution of a single RP serves as the basis 



 

19 

for subsequent methods which treat a computational domain as a series of local 

Riemann problems.    

3.4.2. Calculation of Star Variables 

    Toro’s process to connect known and unknown states is straight-forward. 

Material velocities in the left and right star states are determined using the 

equations 

 
L L L L

R R R L

( )

( )

= −

= +
* *

* *

u u f p , ,

u u f p , .

W

W
 (3.5) 

The functions Lf and Rf are dependent on the classification of the left and 

right waves.  If the outer wave is a shock, the Rankine-Hugoniot conditions are 

applied to determine the functions.  On the other hand, if the outer wave is a 

rarefaction, isentropic relationships and the Generalized Riemann Invariants 

along the characteristics are used (Toro, 1999:120).  A generalized pressure 

function, ( )*f p ,ξ ξW , whereξ  indicates the appropriate left or right state, results 

as 

 

1
2

1
2

*

2( )
( ( ) ( 1))

( )
2

1
1

* *
*

*

*

p p if p p (shock) ,
p 1

f p ,
a p ��� if p p (rarefaction).

p

ξ ξ
ξ ξ

γξ ξ
γξ

ξ
ξ

ρ γ ρ γ

γ

−

⎧⎪⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟⎜−⎪ ⎟⎜⎪ ⎟⎜ ⎟+ + −⎪ ⎝ ⎠⎪⎪= ⎨ ⎡ ⎤⎪ ⎢ ⎥⎛ ⎞⎪⎪ ⎟⎜⎢ ⎥⎟⎪ ⎜ − ≤⎟⎪ ⎜⎢ ⎥⎟⎪ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎪⎪ ⎢ ⎥⎪ ⎣ ⎦⎩

W

>

(3.6) 
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It follows from (3.3) that within the star region L R 0* *u u− = .  Applying this 

relationship to (3.5) yields the equation 

 L R R L( ) ( ) 0L * R *f p , f p , u u+ + − =W W  (3.7) 

whose root, *p , must be found.  The process for determining numerically *p  is, at 

this point, uncomplicated.  First, an initial guess for *p is generated.  Next, the 

generated value is substituted into (3.6) in order to determine L L( )*f p ,W  

and R( , )* Rf p W .  Finally, the condition defined in (3.7) is verified against a 

specified tolerance.  If the condition is satisfied the process is complete, but if the 

condition fails, the process is repeated. 

 Newton’s method was chosen as the root finding algorithm due to its 

quadratic convergence to a solution and ease of implementation.  Toro facilitates 

incorporating this algorithm by providing explicit derivatives for the pressure 

functions, which Newton’s method requires, and by presenting techniques which 

generate initial guesses for *p , based on known primitive variable information 

from the left and right states. 

 After determining pressure in the star region, the solution for *u  follows 

(Toro, 1999:119) as 

 ( ) ( )L R R R L L
1 1( )
2 2* * *u u u f p , f p ,⎡ ⎤= + + +⎣ ⎦W W  (3.8) 

Recall within the star region L R *  *ρ ρ≠ .  The values for density within 

this region depend on the classification of the wave and are determined via the 
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generalized density function * ( )ξ ξ ξ*p ,p ,ρ ρ , whereξ  indicates the appropriate left 

or right state (Toro, 1999:133), as 

 1

( 1) ( 1)
( 1) ( 1))

( )

*
*

*

 * *

*
*

p p
if p p (shock) ,

p p
p ,p ,

p � if p p (rarefaction).
p

ξ
ξ ξ

ξ

ξ ξ ξ
γ

ξ ξ
ξ

γ γ
ρ

γ γ
ρ ρ

ρ

⎧ ⎛ ⎞⎪ + + − ⎟⎪ ⎜ ⎟⎪ ⎜ ⎟⎜⎪ ⎟⎜ ⎟− + +⎪ ⎝ ⎠⎪⎪= ⎨⎪ ⎛ ⎞⎪⎪ ⎟⎜ ⎟⎪ ⎜ ≤⎟⎪ ⎜ ⎟⎪ ⎜ ⎟⎝ ⎠⎪⎩

>

(3.9) 

Solution for primitive variables in the star region is complete, and the RP is fully 

defined. 

3.4.3. Sampling 

  Sampling determines the exact solution to the RP at any point (x, t) in 

the domain of interest.  The procedure makes use of an important mathematical 

property that states, along straight rays emanating from the origin (x = 0), 

solutions to the RP are self-similar (Ben-Artzi, 2003:99).  Solutions at different 

time instants are obtained from one another by a similarity transformation, 

which is analogous to scaling.  In short, the knowledge of the RP solution at an 

instant in time t0 is sufficient to obtain a solution for all t > 0 (Polyanin, 

2004:695).   

 The physical domain for the shock tube problem is [0, L] x [0, T] where T 

is the specified solution time.  To guarantee self-similarity within the problem, 

the discontinuity, physically located at x = L/2 in the shock tube coordinate 

system, must be transformed to x' = 0 , where x'  represents the location in the 
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RP coordinate system.  Figure 3.5 illustrates that the coordinate transformation 

occurs for all points x'  as    

 
2
Lx' x= − . (3.10) 

It follows that the speed required to reach a point x'  at time t in the RP 

coordinate system is 

 '' xs
t

= . (3.11) 

  Figure 3.5a.  Shock Tube Coordinates       Figure 3.5b.  RP Coordinates 

 A solution for the primitive variables at the point x', t( )is obtained by 

comparing s'  to the three RP wave speeds.  These wave speeds are determined 

by the set of equations  
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⎧
⎡ ⎤⎛ ⎞+ −⎟⎜⎢ ⎥⎟+ + >⎜ ⎟⎢ ⎥⎜= ⎟⎜⎨ ⎝ ⎠⎣ ⎦

+ ≤

⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎩

 (3.12) 

If a left rarefaction is present, then the speeds of the head and tail are calculated 

as 

 HL L L

TL L L* *

S u a ,

S u a .

= −

= −
 (3.13) 

For a right rarefaction, the head and tail move with speeds 

 HR R R

TR R R* *

S u a ,

S u a ,

= +

= +
 (3.14) 

where 

 

1
2

*
*

pa a .
p

γ
γ

ξ ξ
ξ

−
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (3.15) 

 At this point, all necessary information to determine ( )x', tW  exists.  

Because *u  represents the contact surface wave speed, comparison of s' to *u  

determines if the sample point is located left or right of the contact discontinuity.  
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Specifically, if s'  < *u  the sample point is located left of the contact.  

Conversely, the point is right of the contact wave when s'  > *u .   

Figure 3.6 shows when the sample point x', t( ) lies left of a contact discontinuity, 

and in the presence of a shock, primitive variables are determined as 

 
L L

L L

( ', )
* *

x'if S ,
tx  t =

x'if S u .
t

⎧⎪⎪ ≤⎪⎪⎪⎨⎪⎪ ≤ ≤⎪⎪⎪⎩

W
W

W
 (3.16) 

On the other hand, in the presence of a rarefaction, primitive variables are 

calculated as 

 

L HL

L HL TL

L TL

( ', )  fan

*  *

x'if S ,
t

x'x  t = if S S ,
t
x'if S u .
t

⎧⎪⎪ ≤⎪⎪⎪⎪⎪⎪ ≤ ≤⎨⎪⎪⎪⎪⎪ ≤ ≤⎪⎪⎪⎩

W

W W

W

 (3.17) 

 Figure 3.6.  Sampling a Solution Point Left of the Contact 
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Because primitive variables vary continuously within the rarefaction expansion 

fan, calculation of these variables requires special consideration as (Toro, 

1999:135) 

 

2
1

 L L
L

L L L L

2
1

L L
L

2 1 '( )
1 ( 1)

2 ( 1) '( ) ,
1 2

2 1 '( )
1 ( 1)
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a t

x, x', t u a u
t

xp p u .
a t

γ

γ
γ

γρ ρ
γ γ

γ
γ

γ
γ γ

−

−

⎧⎪⎪ ⎡ ⎤−⎪⎪ ⎢ ⎥= + −⎪ ⎢ ⎥⎪ + +⎪ ⎣ ⎦⎪⎪ ⎡ ⎤⎪ −⎪= = ⎢ + + ⎥⎨⎪ ⎢ ⎥+ ⎣ ⎦⎪⎪⎪⎪⎪ ⎡ ⎤−⎪ ⎢ ⎥⎪ = + −⎪ ⎢ ⎥⎪ + +⎣ ⎦⎪⎩

W W  (3.18) 

 The same analysis occurs when determining primitive variable values for a 

point x', t( ) right of a contact surface discontinuity.  Figure 3.7 shows, in the 

presence of a shock, primitive variables are calculated by 

 
R R

R R

( ', )
* *

x'if u S ,
tx  t

x'if S .
t

⎧⎪⎪ ≤ ≤⎪⎪⎪= ⎨⎪⎪ ≥⎪⎪⎪⎩

W
W

W
 (3.19) 

 Figure 3.7.  Sampling a Solution Point Right of the Contact 
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In the presence of a rarefaction, primitive variables are determined as 

 

R TR

R TR HR

R HR

( ', )

* *

 fan

 

x'if u S ,
t
x'x  t if S S ,
t

x'if S ,
t

⎧⎪⎪ ≤ ≤⎪⎪⎪⎪⎪⎪= ≤ ≤⎨⎪⎪⎪⎪⎪ ≥⎪⎪⎪⎩

W

W W

W

 (3.20) 

where variables within the fan are calculated (Toro, 1999:136) 
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⎧⎪⎪ ⎡ ⎤−⎪⎪ ⎢ ⎥= − −⎪ ⎢ ⎥⎪ + +⎪ ⎣ ⎦⎪⎪ ⎡ ⎤⎪ −⎪= = ⎢− + + ⎥⎨⎪ ⎢ ⎥+ ⎣ ⎦⎪⎪⎪⎪⎪ ⎡ ⎤−⎪ ⎢ ⎥⎪ = − −⎪ ⎢ ⎥⎪ ⎣ ⎦⎪⎩

W W  (3.21) 

The entire solution of the Riemann problem is defined. 

3.5. Validation of the ERS – The Sod Shock Tube Test 

The developed Riemann solver was validated against a classical shock tube 

problem presented by Sod in 1978.  The shock tube is one meter long, and 

contains a diaphragm, positioned at x = 0.5m, which separates two constant 

initial states 

 
3 2

L

3 2
R

(1.000 kg/m ,0.0 m/sec, 1.0 N/m ) 0.5m
( , 0)

(0.125 kg/m ,0.0 m/sec, 0.1 N/m ) 0.5m

 x < ,
x

 x > .

⎧⎪ =⎪⎪= ⎨⎪ =⎪⎪⎩

W
W

W
 

The solution, consisting of a left rarefaction, contact, and right shock wave 

pattern, develops over the time interval t = [0.0, 0.25] sec.  Profiles of primitive 
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variables and internal energy at 10,001 equally-spaced points throughout the 

shock tube are depicted in Figure 3.8 - Figure 3.11.  In addition to the Sod test, 

four other shock tests were solved using the ERS.  The solutions to these tests 

consisted of combinations of strong shocks and rarefactions (Einfeldt et. al., 

1991:273-295; Woodward and Colella, 1984:115-173).  Numerical results proved 

consistent with published data for all tests. 

The exact Riemann solver algorithm serves as the basis for subsequent 

methods which treat a computational domain as a series of local Riemann 

problems.  Furthermore, the solver applied to the Sod shock tube test provides a 

benchmark for comparing calculations determined by finite volume techniques. 
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 Figure 3.8.  Density Profile at t = 0.25 sec 
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 Figure 3.9.  Material Velocity Profile at t = 0.25 sec 
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 Figure 3.10.  Pressure Profile at t = 0.25 sec 

 

 Figure 3.11.  Specific Internal Energy Profile at t = 0.25 sec 
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4. Code Implementation in One Dimension 

4.1. Overview 

A general scheme for non-linear hyperbolic systems of equations is 

presented in this chapter.  Finite volume techniques are introduced and applied 

to the time-dependent Euler conservation equations in a single dimension.  

Godunov’s first-order upwind conservative method, which employs exact 

solutions to local Riemann problems in order to calculate numerical intercell 

fluxes, is described.  Improvements to computational efficiency are introduced as 

approximate Riemann solvers.  Second-order extensions of Godunov’s method 

and total variation diminishing (TVD) techniques are implemented to improve 

solution accuracy.  The developments presented allow relaxation of symmetry, 

which Toro’s ERS assumes, in order to obtain solutions to more extensive 

categories of problems than the ERS permits.  The developed computational 

model is validated against the benchmark shock tube test, as well as a 

documented experimental shock test. 

4.2. Initial Boundary Value Problem (IBVP) 

The one-dimensional initial boundary value problem for non-linear systems 

of hyperbolic conservation laws, assuming uniform flows in the y and z directions 

is defined as  
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 (0)

L R

( ) 0

( , 0) ( ),

(0, ) ( ); ( , ) ( ).

t xPDEs :  ,

ICs :  x   x

BCs :  t t L  t t

+ =

=

= =

U F U

U U

U U U U

 (4.1) 

U(x, t) is a vector of conserved variables; F(U) is a vector of fluxes; (0)( )xU  is the 

piecewise constant distribution of initial data at time t = 0; [0, L] is the spatial 

domain and the boundary conditions are represented by boundary functions 

L( )tU and R( )tU (Toro, 1999:213).  Boundary conditions may be specified as 

symmetric, or reflective, or transmissive. 

4.3. Domain Discretization 

Numerical solutions for the IBVP (4.1) require discretization of the spatial 

and temporal computational domain.  Figure 4.1 introduces a discretized x-t 

mesh convention where the spatial domain, of length L, is partitioned into I 

computational cells of uniform width 

 Lx
I

Δ = . (4.2) 

Each computational cell is bounded by faces 1/2i − and 1/2i + located at 

 
1/2

1/2

( 1) ,

.
i

i

x i x

x i x

Δ

Δ
−

+

= −

=
 (4.3) 

The center of the ith computational cell, ix , is determined as 

 1( )
2ix i x.Δ= −  (4.4) 
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Figure 4.1 shows non-uniform time steps which are determined, adaptively, as  

 
Δ

Δ cfl
n
max

C x
t =

S
. (4.5) 

 Figure 4.1.  Discretized Domain 

cflC is the Courant coefficient satisfying the condition 

 0 1cflC< < . (4.6) 

As cflC approaches one, the time stepping scheme exhibits maximum efficiency.  

n
maxS is the maximum wave speed present throughout the spatial domain during 

time level n.  For the time-dependent, Euler equations, a reliable approximation 

for n
maxS , which extends to multi-dimensional problems, (Toro, 1999:221) is 

 { }n n n
max i iS max u a .= +  (4.7) 
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The conditions set forth in (4.5) - (4.7) predict no wave present in the solution of 

all Riemann problems travels a distance greater than Δx during Δt .  This 

prediction correlates directly to solution stability during a time step, and will be 

further discussed later. 

 With the x-t domain fully discretized, solutions for (4.1) ensue.  Results 

are the piecewise constant distribution of cell averaged values assigned to  

computational cells as (Toro, 1999:215) 

 ( )n n
ix, t =U U . (4.8) 

4.4. Discretization of the Euler Conservation Equations 

 In order to discretize (4.1) as applied to the Euler conservation equations, 

discontinuous solutions must be considered.  In these cases, the smoothness 

assumption that leads to the differential form of the conservation equations no 

longer holds true (Toro, 1999:19).  Therefore, development of a finite volume 

discretized form of (4.1) begins with consideration of the integral form of the 

equations applied to a control volume 1 2 1 2[ , ] [ , ]x x t t× in the domain of interest. 

Integrating the system of conservation equations in x-t space and using Green’s 

theorem yields the integral form of the conservation equations  

 ( )dx dt ,⎡ ⎤− =⎢ ⎥⎣ ⎦∫ U F U 0  (4.9) 

where the line integration is performed, counter-clockwise, along the boundary of 

the domain (Toro, 1999:62).  This integral may be expanded as 
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2 2 2 2

1 1 1 1

2 1 1 2( , ) ( , ) ( ( , )) ( ( , ))
x x t t

x x t t

x t dx x t dx x t dt x t dt= + −∫ ∫ ∫ ∫U U F U F U , (4.10) 

which yields the conservative, discretized form of the Euler conservation 

equations (Toro, 1999:217) 

 1
1/2 1/2[ ]n n

i i i i
t
x

Δ
Δ

+
− += + −U U F F . (4.11) 

Simply stated, (4.11) indicates the solution n+1
iU is determined by n

iU and the net 

flux through a cell where i 1/2−F represents the conserved variable flux entering 

the cell through face 1/2i −  and i+1/2F  is the flux exiting the cell through face 

1/2i +  .  These numerical fluxes are determined via equation (2.6).  The 

solutions for primitive variables at each cell face, required to solve (2.6), are 

evaluated by solving Riemann problems at the faces.  Godunov’s scheme provides 

a method to determine all components required for solutions of (4.11) for a 

computational domain. 

4.5. The Godunov Scheme 

Godunov’s first-order upwind method is a conservative method of the form 

(4.11) where intercell numerical fluxes are computed using solutions of local 

Riemann problems.  Spatial discretization for a given time step is depicted in 

Figure 4.2. 
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Figure 4.2.  Domain Discretization for a Single Time Step 

Note that each pair of cells provides information to solve the RP, in primitive 

variable form, at the shared cell face 1/2i +  during time stepΔt such that  

 

( )

( , )

t x

in n
i

i+1

,

� x < 0
x  t

�x > 0.

+ =

⎧⎪⎪= = ⎨⎪⎪⎩

W F W 0

W
W W

W
 (4.12) 

Therefore, exact solutions for (4.12) at each cell face provide the requisite 

information to determine conserved variable fluxes, via equation (2.6).  These 

fluxes, coupled with cell conserved variable values at the beginning of a time 

step, n
iU , and a specified time step determined by (4.5) facilitate solutions for 

cell conserved variables n+1
iU at the end of a time step.  Finally, these updated 

cell conserved variables serve as initial conditions for the RPs during the 

subsequent time step. 

Several aspects of Godunov’s scheme require special consideration.  

Specifically, in order to solve the RPs at x = 0  and x = L, and update solutions 

in cells 1 and M, computational cells must exist to the left of x = 0  and to the 

right of x = L, respectively. Additionally, determination of a time step Δt which 
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maximizes computational efficiency and stability is significant.  Finally, 

calculating primitive variables and, hence, numerical fluxes through cell faces 

requires a modification to the ERS sampling procedure.       

4.6. Special Considerations 

4.6.1. Phantom Cells 

The imposition of phantom cells ensures that solutions at the 

computational domain boundaries are consistent with conditions defined by the 

physical model.  When modeling shocks, two types of boundaries are considered: 

reflective, or symmetric, and transmissive.   

If the boundary located at x = L represents, physically, a fixed, reflective, 

impermeable surface, then the physical border is correctly modeled by a fictitious 

or phantom state  n
I+1W  that is defined from the known computational state n

IW  

such that 

 1 1 1, , .n n n n n n
I I I I I Iu u p pρ ρ+ + += = − =  (4.13) 

Similarly, a physically symmetric boundary location at x = 0 requires 

 0 1 0 1 0 1, , .n n n n n nu u p pρ ρ= = − =  (4.14) 

 Transmissive conditions attempt to numerically reproduce boundaries that 

allow the physical passage of waves without any effect on them.  For this case, 

the primitive variables in phantom cells at x = L and x = 0 are defined as 

 1 1 1, , ,n n n n n n
I I I I I Iu u p pρ ρ+ + += = =  (4.15) 
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and 

 0 1 0 1 0 1, , .n n n n n nu u p pρ ρ= = =  (4.16) 

Although transmissive boundaries work well in a single dimension, attempts to 

model their effects in multi-dimensional problems produces false reflections, and 

is an area of significant ongoing research (Toro, 1999:224). 

4.6.2. Time Step Stability 

Recall that a stable time step is approximated from the conditions defined 

in (4.5) - (4.7).  Now consider the solutions to the Riemann problems at cell faces 

1/2ix + and 3/2ix + as depicted in Figure 4.3.  Observe the left traveling shock, 

resulting from the solution of the RP at 3/2ix + , travels rapidly to the left and 

reaches the boundary located at 1/2ix +  before the completion of time step Δt .  

This shock effectively interferes with the solution of the RP at 1/2ix +  and results 

in an erroneous flux calculation that propagates outward toward other cells.  As 

incorrect computations are advanced forward in time, errors are compounded 

introducing numerical instabilities.  To remedy this problem, the time step is 

shortened to Δt' and interference between adjacent RPs is avoided.  

Time steps are easily shortened by modifying the value of the CFL 

coefficient.  Recall the maximum wave speed is approximated by cell values of 

material velocity and speed of sound.  For shock tests where stationary states 

initially exist (u = 0) the maximum wave wave speed is dominated by the speed     
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 Figure 4.3.  Wave Patterns in Adjacent Riemann Problems 

of sound, and is often underestimated.  The result is a time step that is too large 

which, potentially, introduces instabilities early in the computations.  In order to 

maximize stability and computational efficiency, Toro recommends cflC = 0.2 for 

the first five time steps, and cflC = 0.9 thereafter. 

4.6.3. Sampling 

Chapter 3 presented the complete exact solution to a general Riemann 

problem for the Euler equations.  Recall that the sampling procedure requires a 

coordinate transformation from the physical domain of the shock tube, x , to the 

computational domain, x' , of the RP.  The solution for primitive variables at a 

given point within the shock tube is then determined by comparing '/x t  to the 

wave speeds generated by the RP.   

For Godunov’s scheme, sampling is performed at the cell face, only, for the 

special value '/ 0x t = .  Recall the ERS determined that '/x t  < *u indicated the 

sample point was located left of the contact wave.  For Godunov’s method, this 

is analogous to * 0u > .  Similarly, * 0u < indicates the sample point, or intercell 

boundary, is located right of the contact when applying Godunov’s scheme.  

RP(i + 1/2) RP(i + 3/2  )

tΔ
'tΔ

RP(i + 1/2) RP(i + 3/2  )

tΔ
'tΔ
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Finally, each of the shock and rarefaction wave patterns analyzed during ERS 

sampling must be taken into account by Godunov’s method.           

Godunov’s scheme may be summarized as follows.  Following application 

of boundary conditions, via phantom cells, a stable time step is approximated.  

At each cell face, a Riemann problem is solved, exactly, in order to determine 

primitive variables at the face.  The RP solutions allow determination of 

conserved variable fluxes through each face from equation (2.6).  Finally, 

conserved variables in each cell are updated by (4.11) and primitive variables are 

determined by equation (2.4).  The scheme continues, forward in time, until the 

desired solution time is achieved. 

4.7. Numerical Results of Godunov’s Method 

Here the performance of Godunov’s method is analyzed against the 

benchmark shock tube test from Chapter 3, consisting of a left rarefaction, 

contact, and right shock.  The results were determined using a spatial domain 

discretized with I = 200 computational cells.  Boundary conditions were set as 

transmissive; Toro’s method for CFL coefficient selection was applied.  Figure 4.4 

shows a density profile at t = 0.25 sec following 125 time steps.   

Solutions are smeared at the shock and contact discontinuities, as well as 

at the head and tail of the rarefaction, which is a common feature of first-order 

methods.  Note that the shock front is smeared over four cells, while the contact 

surface is distributed over 27 cells.  In general, contact waves are more 
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 Figure 4.4.  ERS vs. Godunov Density Profile at t = 0.25 sec 

difficult to resolve than shocks due to the behavior of the characteristics.  Recall 

the characteristics on either side of a contact run parallel to the discontinuity, 

while shock characteristics run into the shock.  This compression mechanism 

effectively enhances numerical shock resolution.  Lastly, the rarefaction wave, 

which is a smooth flow feature, exhibits smearing near the head and tail, where a 

discontinuity in the derivative exists (Toro, 1999:227).   

It is expected that resolution would improve at each smearing location as 

the coarse mesh of 200 cells is refined.  In fact, increasing the number of 

computational cells by a factor of five, from 200 to 1000, achieves improved 

resolution at solution and derivative discontinuities, as depicted in Figure 4.5. 
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 Figure 4.5.  ERS vs. Godunov Density Profile (1000 cells) at t = 0.25 sec  

Here, the shock front remains smeared over four cells, while the contact 

discontinuity is resolved over 64 cells.  Because the spatial mesh refinement did 

not increase smearing of the contact surface by the same factor of five, resolution 

of the associated numerical solutions is improved. 

Godunov’s method, used in conjunction with an exact Riemann solver, is 

shown to accurately predict the locations and speeds of each wave.  This feature 

of the scheme is important when modeling shock propagation.  Furthermore, the 

method guarantees monotonic solutions (Toro, 1999:226) near discontinuities, 

which will prove significant when implementing second-order methods.  Finally, 

practical computations involving Godunov’s method require solutions to billions 

of Riemann problems, making the iterative ERS solution process the most 
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demanding task in the numerical method.  In the next section, improvements in 

computational efficiency, to include solution approximations, are examined.     

4.8. Adaptive Riemann Solvers 

The computational effort required by the iterative exact Riemann solver 

may not always prove justifiable.  For this reason, several non-iterative 

approximate Riemann solvers have been developed in recent decades.  These 

improved solution algorithms are based on Godunov’s scheme, and offer the 

benefit of improved efficiency without sacrificing accuracy.  Riemann problem 

solutions may be estimated by one of two methods: numerical flux 

approximations or state approximations.  The latter form the basis for modern 

Godunov-type methods and are examined here. 

Recall the exact Riemann solver requires finding the root of Toro’s 

pressure equation in order to ultimately determine values for primitive variables 

in the star region.  Toro presents three approximations, based on known left and 

right states, and an assumption of wave patterns in the RP, that predict these 

same variables with equal accuracy and greater efficiency than the exact 

techniques.  Furthermore, Toro includes a set of conditions that apply known 

state variables to adaptively select the most favorable value of the determined 

approximations.   

Toro’s techniques are easily implemented because two of the three 

approximate Riemann solvers are based upon the exact Riemann solver.  
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Additionally, adaptive selection of the most favorable approximation applies the 

same logic used to select the initial pressure guess for Newton’s method in the 

ERS.   

Toro refers to the three approximate Riemann solvers as the primitive 

variable Riemann solver (PVRS), two-rarefaction Riemann solver (TRRS) and 

two-shock Riemann solver (TSRS).  The logic sequence for selecting an 

approximate solver (Toro, 1999:306) is included in Figure 4.6, followed by 

governing equations for each solver. 

 Figure 4.6.  Logic Sequence for Adaptive Noniterative Riemann Solver 

 

The PVRS relies on the assumption that smooth flows exist in the region 

of interest.  This assumption yields a linear, hyperbolic system of equations which 
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is solved, exactly, to provide relationships for primitive variables in the star 

region as 
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Recall the exact Riemann solver pressure function 

 ( ) ( ) 0L R R L+ +L * R *f p , f p , u u ,W W − =  (4.18) 

where the left and right functions are based on the classification of the outer 

waves in the RP as 
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The TRRS assumes both outer waves are rarefactions and substitutes the 

appropriate relationships from (4.19) into (4.18).  The resulting closed-form 

solutions for primitive variables in the star region (Toro, 1999:301) are calculated 

as 
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Similarly, the TSRS classifies both outer waves as shocks.  Unfortunately, 

this approximation does not lead to a closed form solution.  Resulting quadratic 

equations lead to non-uniqueness of solutions and, in the case of complex roots, 

non-existence of solutions.  An acceptable alternative is to first estimate pressure 

as pvrsp and then apply the two-shock assumption to solve the pressure function.  

The resulting equations are  
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where 

 0 max(0, )PVRSp  p=  (4.22) 

and  

 
( ) ( )

1
2

0
0

2( )
1 1

g p
p pξ

ξ ξρ γ γ

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎡ ⎤+ + −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. (4.23) 

 The adaptive techniques were implemented in the computational model 

and applied to the benchmark shock tube test.  Parameters discussed in section 

4.7 were maintained.  A comparison of the test results is shown in Figure 4.7.   

 Figure 4.7.  Comparison of Godunov’s Method Using ERS and ARS 

 While the results generated by the exact and approximate techniques 

appear graphically identical, the computational costs differ significantly.  

Specifically, calculations executed with the approximate solver, for all five shock 

tests presented by Toro, ran, on average, nearly 36% faster than exact 
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computations.  Based on this observation, I conclude that the approximate solver 

is best suited for all subsequent calculations.  Finally, an accurate and efficient 

first-order method is established and second-order accuracy is examined next. 

4.9. E.F. Toro’s Weighted Average Flux (WAF) Method 

Here a second-order extension to Godunov’s method is explored.  Flux 

calculations in Godunov’s first-order scheme require solutions to Riemann 

problems along cell faces only.  The weighted average flux method analyzes the 

full structure of the RP in order to determine the total flux through a cell face.  

Toro presents two versions of his WAF method.  The first scheme determines an 

integral average of the flux across the full solution of a local RP.  The second 

version computes a weighted average state of primitive variables across the local 

RP and applies these states to determine WAF (Toro, 1999:492).  The latter 

version requires fewer flux calculations than the former, and is implemented here 

due to its computational efficiency. 

Weighted average flux is defined as (Toro, 1999:429) 
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≡ ∫F F U . (4.24) 

As applied to the weighted average state (WAS) version of flux, (4.24) may be 

rewritten 
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where the WAS of primitive variables across a local RP is expressed 
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 Figure 4.8 depicts the general wave structure of a local Riemann problem 

with N waves, where the flux weights, kβ , for k = 1, …, N+1 are normalized 

lengths of segments 1k kA A−  such that 1 /k k kA A xβ Δ−= . 

  Figure 4.8.  General Wave Structure of a Local Riemann Problem 

These weights can be expressed, in terms of the wave speeds, as 
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Here kc is the local courant number for wave k moving with speed kS  and 

represents the fraction of the cell width that the kth wave traverses during a time 

step Δt .  In expanded form, the weights are expressed as 

 1 1 2 2 1 3 3 2 4 3
1 1 1 1(1 ), ( ), ( ), (1 ).
2 2 2 2

c c c c c cβ β β β= + = − = − = −  (4.28) 

For the wave structure of Figure 4.8, the WAS integral (4.26) becomes 
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 where the corresponding states are defined as 
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and 
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β
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The weighted average state of each primitive variable is now fully defined.  

Weighted average flux is determined merely by applying equation (2.6) to the 

WAS variables.  

 To demonstrate the second-order extension of Godunov’s method, the Sod 

shock test was revisited.  Parameters discussed in section 4.7 were maintained.  A 

comparison of test results is shown in Figure 4.9.  Inspection of the figure 

indicates improved resolution at discontinuities over Gounov’s first-order method.  

Specifically, smearing at the contact discontinuity experienced a reduction from 
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27 cells to 22 cells.  However, the WAF method introduced spurious oscillations 

at each discontinuity, sometimes called Gibb’s phenomena, (Toro, 1999: 445) 

which are common side effects of second order-methods.  Analysis of the WAF 

method and Figure 4.8 provides an explanation of the fluctuations. 

 Figure 4.9.  WAF Method Density Profile at t = 0.25 sec 

 Recall that Godunov’s first-order method determines flux along the cell 

face, only.  Inspection of Figure 4.8 shows, whether 2 0S >  or 2 0S < , that the 

cell face in the local RP always lies in the upwind portion of the star region.  

With regard to solutions, upwind flux contributions correlate to stability while 

downwind contributions facilitate increased accuracy.  Therefore, because 

Godunov’s first-order flux calculations contain only an upwind flux contribution, 

stable solutions, which may be refined for accuracy, are expected.  The WAF 
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method introduces these refinements in terms of downwind flux contributions.  

Note from Figure 4.8 that when 2 0S >  the WAF contribution in the star region 

consists of the upwind flux with weight 2β , and the downwind flux with 

weight 3β .  For the case 2 0S < , the upwind flux weight in the star region is 3β  

while the downwind flux weight is 2β .  In both situations, the upwind flux 

contribution is larger than the downwind contribution and the WAF method is, 

therefore, upwind biased (Toro, 1999:418).  This fact indicates the WAF method 

maintains the stability of its first order predecessor, but benefits from increased 

accuracy due to downwind contributions.  Unfortunately, these downwind 

contributions introduce oscillations in discontinuous regions where steep gradients 

exist.  E.F. Toro’s limited weighted average flux method uses adaptive, total 

variation diminishing techniques that effectively ameliorate these oscillations 

while preserving stability and accuracy.         

4.10.  E.F. Toro’s Limited Weighted Average Flux (LWAF) Method 

Total variation diminishing (TVD) schemes are intimately linked to 

traditional artificial viscosity methods as both techniques attempt to eliminate or 

control false fluctuations near high gradients.  Whereas artificial viscosity 

schemes introduce oscillation reduction mechanisms explicitly, moderation is 

inherent in TVD methods. 
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Given a function ( , )u u x t= , the total variation of the function at a fixed 

time nt t=  is denoted ( ( ))TV u t .   If { }n n
iu u=  is a mesh function, then the total 

variation of nu is defined as (Toro, 1999:448) 

 1
1

( )
I

n n n
i i

i
TV u u u+

=
≡ −∑ . (4.32) 

A scheme is said to be TVD if 

 1( ) ( ),n nTV u TV u n+ ≤ ∀ . (4.33) 

Finally, the above definitions produce the consequence 

 1 0( ) ( ) ... ( )n nTV u TV u TV u−≤ ≤ ≤ . (4.34) 

 Two important characteristics of TVD methods are convergence of 

solutions and preservation of monotonicity.  The benefit of the former is obvious.  

As for the latter, schemes that preserve monotonic behavior of solutions predict 

when data { }n
iu  is monotonic, the solution set { }1n

iu +  is monotone in the same 

manner.  Explicitly, if { }n
iu  is monotonic increasing so is { }1n

iu + , and if { }n
iu  is 

monotonic decreasing so is { }1n
iu + .  Because Godunov’s first-order method 

guarantees monotonic solutions near discontinuities, methods that are TVD must 

preserve this behavior in the presence of strong flows.           

In order to limit downwind flux contributions and ensure monotonic 

behavior near discontinuities, Toro presents four weight limiter functions that 

effectively regulate flux weights within downwind regions of local Riemann 
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problems.  These weight limiter functions, ( , )r cφ , are derived directly from 

corresponding flux limiter functions ( )rψ and are related as (Toro, 1999:499) 

 ( , ) 1 (1 ) ( ) ( )r c c r sign cφ ψ= − − . (4.35) 

 Here, c is the local courant number given by equation (4.27) and r represents a 

flow parameter that compares upwind and local density gradients as 

 upw

loc
r

Δρ
Δρ

= . (4.36) 

These equations represent scalar relationships applied to a single wave.  In 

practice, solutions of the Euler conservation equations in a single dimension 

produce three waves resulting from the three conservation laws.  Therefore, 

(4.35) and (4.36) are, in fact, applied across each wave in the solution of the 

Riemann problem.   

Before introducing the governing equations associated with flux limiters, 

an illustrative examination of flow parameter calculation is presented in Figure 

4.10.  For each case, the local density gradient at the i +1/2 boundary across the 

kth wave is calculated 

 1/2, 1/2, 1 1/2,i k i k i kΔρ ρ ρ+ + + += − . (4.37) 

For the case where 1/2, 0i kc + > , the upwind location lies left of the local position 

and the upwind density gradient is determined at the i – 1/2 boundary across the 

kth wave as 
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 1/2, 1/2, 1 1/2,i k i k i kΔρ ρ ρ− − + −= − . (4.38) 

Conversely, when 1/2, 0i kc + < , the upwind site lies right of the local location and 

the upwind density gradient is calculated at the i + 3/2 boundary across the kth 

wave as 

 3/2, 3/2, 1 3/2,i k i k i kΔρ ρ ρ+ + + += − . (4.39) 

Finally, relationships (4.36) - (4.39) can be conveniently summarized by the 

equation 
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+

= . (4.40) 

Determination of the flow parameter introduces a side effect of the LWAF 

method that requires special consideration.  For the case where 1/2, 0i kc + >  and 

the local boundary i + 1/2 lies at the left edge of the physical domain at x = 0,  

 Figure 4.10.  Determination of Flow Parameter   

the upwind density gradient across boundary i -- 1/2 requires solution of a 

Riemann problem via phantom cells 0 and -1.  Although phantom cell 0 exists, 
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cell -1 must be added.  Similarly, when 1/2, 0i kc + < and the local boundary at i + 

1/2 lies at the right edge of the physical domain at x = L, the upwind density 

gradient across boundary i + 3/2 requires solution of a Riemann problem using 

phantom cells I+1 and I+2.  Here, phantom cell I+2 is added.   

To correctly model physically reflective or symmetric boundary conditions 

at x = 0 and x = L these added phantom cells are defined from known 

computational states as (Toro, 1999:491) 
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Likewise, transmissive boundaries are given by  

 
1 2 1 2 1 2

2 1 2 1 2 1

, ,

, ,

n n n n n n

n n n n n n
I I I I I I

u u p p

u u p p

ρ ρ

ρ ρ
− − −

+ − + − + −

⎫= = = ⎪⎪⎪⎬⎪= = = ⎪⎪⎭
. (4.42) 

Toro presents four weight limiters identified as Super A, Van Leer A, Van 

Albada A, and Mini A and associates flux limiters Super Bee, Van Leer, Van 

Albada, and Mini Bee (Toro, 1999:469) with the respective weight limiters.  

These flux limiters are defined as   
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and are plotted in Figure 4.11.  

 Figure 4.11.  Flux Limiter Comparison 

The flow parameter, coupled with flux and weight limiter functions, 

provides adaptive adjustments to flux weight calculations based upon local 

conditions resulting from Riemann problem solutions.  The flow parameter 

effectively measures the smoothness of solutions.  When the upwind and local 
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density gradients are comparable, r approaches one, flows are characterized as 

smooth, and downwind flux contributions are included to guarantee second-order 

accuracy of solutions (Toro, 1999:457).  However, as r >> 1, flows become 

discontinuous, imposing adaptive adjustment to flux calculations.  Inspection of 

flux limiter functions (4.43) - (4.46) and Figure 4.11 shows fluxes are regulated as 

r becomes large.  Specifically, when r exceeds one, upwind flux contributions are 

maximized to ensure stability, while downwind flux contributions are limited in 

order to restrict the downwind flux components that produce false fluctuations 

near discontinuous regions. 

With TVD methods fully introduced, the weighted average state of each 

primitive variable must be determined.  A TVD scheme, analogous to equation 

(4.29) is given as 
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Finally, limited weighted average flux is determined merely by applying equation 

(2.6) to the LWAS variables.  

Application of the flux and weight limiters to the benchmark shock tube 

test produced results depicted in Figure 4.12, Figure 4.13, and Figure 4.14.  

Figure 4.12 indicates that each flux limiter effectively eliminates spurious 

oscillations near the shock and contact surface discontinuities.  Figure 4.13 and 

Figure 4.14  reveal detailed behavior of each limiter function in the two regions of 

interest.  Figure 4.13 indicates that the Super Bee flux limiter function performs 

best at the contact surface, while the Van Leer function provides more 

graphically consistent results, compared to exact solutions, than the remaining 

three functions at this discontinuity.  Inspection of Figure 4.14 demonstrates 

sporadic behavior of the Super Bee function at the shock front, while the Van 

Leer limiter best eliminates oscillations at the discontinuity.  Therefore, the Van 

Leer flux limiter is presumed best for shock modeling and will be implemented for 

all subsequent calculations. 



 

59 

 Figure 4.12.  Flux Limiter Sod Test Density Comparison 

 

Figure 4.13.  Contact Surface Flux Limiter Density Comparison 
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 Figure 4.14.  Shock Front Flux Limiter Density Comparison 

4.11. Verification of Second-Order Accuracy 

The primary objective of numerical techniques is to determine accurate 

approximations to exact solutions.  The order of accuracy of an implemented 

scheme measures the amount by which exact solutions differ from discrete 

numerical solutions such that (Slater, 2000) 

 ( ) p
exactE f h f Ch= − = . (4.49) 

E represents absolute error; f(h) and exactf  symbolize approximate and exact 

solutions, respectively; C is a constant; and h is a measure of grid spacing with 

order of accuracy p where 
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Here, a and b represent lower and upper domain limits, while n denotes the 

number of subintervals used to discretize [a, b].  It follows from (4.49) that  

 
( ) exact

p p
f h fE C

h h
−

= = , (4.51) 

which predicts that finite volume error calculations for p =2 using varying mesh 

sizes are expected to yield a constant, for a second-order accurate scheme.   

Confirmation of second-order accurate solutions was examined by 

comparing exact solutions from the benchmark shock test against solutions 

calculated using the TVD LWAF Godunov scheme with several mesh sizes.  

Sample points were selected from each of the four Riemann problem states and 

analyzed for error and order accuracy.  Table 4.1 depicts this comparison in the 

left star state.   

n E E/h E/h2 

25 0.00133348 0.033337 0.833425 
50 0.00232385 0.116192 5.80962 
200 0.000166184 0.0332369 6.64738 
400 0.000031504 0.0126019 5.04076 
800 4.78943 x 10-6 0.00383155 3.06524 
1600 1.33387 x 10-6 0.00213420 3.41472 
3200 5.98817 x 10-7 0.00191621 6.13188 
6400 4.07474 x 10-7 0.00260783 16.6901 
12800 2.64006 x 10-7 0.00337928 43.2547 

 Table 4.1.  Error Comparison for Density in Left Star State 

If the scheme is, in fact, second-order accurate, the results in column four of 

Table 4.1 are expected to converge to a constant.  Similarly, a first-order 
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accurate scheme would produce convergent results in column three of the table.  

Column two of the table indicates that solutions begin to converge as the mesh 

size is refined from 500 to 1000 cells.  However, at first glance, neither column 

three nor column four appears to converge to a constant along this interval, and 

the order of accuracy of the scheme cannot be definitively stated.   

Because the magnitudes of the values in the respective columns differ by 

several orders, the error was further analyzed using a log-log plot.  Specifically, 

taking the log of both sides of equation (4.49) yields 

 log log logE C p h= +  (4.52) 

which indicates that the logarithmic error varies linearly with mesh size, h, and 

slope p.  Figure 4.15 shows data sets generated from (4.52), using p = 1, p = 2, 

and mesh sizes from Table 4.1, as compared to error calculated from the left star 

state of the computational model with the same parameters.  The figure indicates 

error data generated using the developed one-dimensional code more closely 

resemble data produced from (4.52) with p = 2.  The same analysis was 

conducted using data from the right star state, and produced similar results.  

Because the generated results show better graphical correlation to second-

order accuracy, as compared to first-order accuracy, the TVD LWAF Godunov 

scheme, empirically, exhibits second-order accuracy.   
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Figure 4.15.  Log-Log Plot of Error vs. Number of Cells in Left Star State 

4.12. Validation of the One-Dimensional Shock Code 

4.12.1.  Sod Test in One Dimension 

During each step of code development, calculated data were compared 

against the Sod shock test data computed with an exact Riemann solver.  

Graphical evaluation of these data sets verified proper implementation of each 

introduced numerical technique.  In addition to the Sod test, generated data from 

four diverse shock tests, discussed in Chapter 3, were compared graphically to 
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4.12.2.  Army Research Laboratory (ARL) 57cm Shock Test 

In 1996, the Army Research Laboratory (ARL) used measurements 

obtained in their 57cm shock tube facility to validate a second-order accurate 

single dimensional shock code.  The shock tube was 100m long with a diameter of 

57cm and contained a driver region 0.91m long (Schraml, 1996; Wittig, 1999:72).  

The following conditions existed at the beginning of the experiment. 

 
3 3 2

L

3 3 2
R

(4.486kg/m , 0.0m/sec, 379.2 10 N/m ) 0,
( , 0)

(1.208 kg/m , 0.0m/sec, 102.1 10 N/m ) 0.

  �x
x  

  �x

⎧⎪ = × <⎪⎪= ⎨⎪ = × >⎪⎪⎩

W
W

W
 (4.53) 

An overpressure history was collected from a measurement station located 

31.48m from the initial discontinuity.  Figure 4.16 portrays overpressure history 

data determined experimentally and computationally by ARL.  The shock front 

arrived at the experimental measurement station at 66.0ms with a measured 

overpressure of 66.3kPa (Schraml, 1996; Wittig, 1999:73).  

Using the developed LWAF one-dimensional code to accurately model the 

ARL experiment and, ultimately, validate the overpressure at the shock front 

requires, first, time of arrival calibration.  To verify correct time of arrival of the 

shock front, a symmetry boundary was placed at x = 0m while a transmissive 

boundary was positioned at x = 50m.  This far right boundary location reduced 

execution time without affecting results at the computational measurement 

station at x = 31.48m (Wittig, 1999:74).  The computational domain was    



 

65 

 Figure 4.16.  ARL Overpressure History at 31.48m 

discretized into 5000 cells during the time interval [0, 100] msec, a CFL 

coefficient of 0.9 was applied, and the van Leer flux limiter function used. 

Code execution using these initial conditions generated a later time of 

arrival, by 0.61ms (0.9% relative error), and a lower static overpressure, by 

6.6kPa (10.0% relative error), than observed during the ARL experiment.  To 

resolve these discrepancies, the code was re-executed using varying mesh sizes 

and CFL coefficients.  Table 4.2 summarizes the results of mesh refinement, using 

a CFL coefficient of 0.9, for all computations.   

Because mesh refinement did not significantly alter shock time of arrival, 

calculations were repeated using several CFL coefficients and a mesh size of 5000 

cells, to maximize computational efficiency.  Table 4.3 summarizes the results of 

these calculations.      
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n Time steps 
(CFL = 0.9) 

Time of 
Arrival (msec) 

Max Static 
Overpressure 

(kPa) 

5000 5623 66.61 59.7 
6000 6750 66.62 59.3 
7000 7875 66.63 59.9 
8000 8999 66.69 59.7 
9000 10123 66.70 59.4 
10000 11250 66.71 59.9 

Table 4.2.  Mesh Refinement Effects on Time of Arrival and Static Overpressure   

 

CFL Time steps 
(CFL = 0.9) 

Time of 
Arrival (msec) 

Max Static 
Overpressure 

(kPa) 

0.9 5623 66.61 59.7 
0.8 6310 66.54 58.8 
0.6 8410 66.48 58.8 
0.4 12609 66.44 58.7 
0.2 25208 66.45 58.6 
0.1 50412 66.49 58.6 

Table 4.3.  CFL Refinement Effects on Time of Arrival and Static Overpressure  

As with mesh refinement, CFL coefficient modification did not produce 

significant changes to time of arrival or static overpressure.  Because the 

objectives of these refinements were to decrease time of arrival and increase 

overpressure, data from the above tables were examined to predict the most 

favorable combination of mesh size and CFL coefficient.  Based on this analysis, 

a final computation was run using a mesh of 7000 cells with a CFL coefficient of 

0.4.  Again, solutions failed to improve.  Finally, in order to minimize the 

possibility of false reflections at the computationally transmissive boundary, 
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several simulations were completed by modifying the location of the far right 

boundary from 60m to 100m.  Solutions did not improve, and I concluded that 

the discrepancies resulted from the simplifying assumptions, inherent in the Euler 

conservation equations, which neglect the physical effects of viscosity and heat 

transfer.   

In the end, achieving the correct arrival time required increasing the initial 

conditions in the driver region by five percent to 
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⎧⎪ = × <⎪⎪= ⎨⎪ = × >⎪⎪⎩

W
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 (4.54) 

Figure 4.17 illustrates overpressure history data at the computational 

measurement station.  As depicted in Figure 4.18, compared to ARL 

computational results, the LWAF generated data proves smooth at the shock 

front (a result of application of the TVD flux and weight limiter functions). 

 The developed LWAF single dimensional code predicted shock arrival at 

the computational measurement station after 66.03ms, and a peak overpressure 

at the shock front of 62.4kPa.  Because the predicted overpressure agreed with 

the experimental overpressure within 5.9%, I concluded the developed 

computational model correctly models shocks.  Confident that the implemented 

single-dimensional techniques are sound, the numerical procedures are next 

extended into two and three dimensions. 
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  Figure 4.17.  LWAF Overpressure History at 31.48m 

 

 Figure 4.18.  Overpressure History Comparison at 31.48m 
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5. Code Implementation in Multiple Dimensions 

5.1. Overview 

The fully developed, single-dimensional, second-order accurate LWAF 

solver is applied to two and three-dimensional schemes for non-linear hyperbolic 

systems of equations.  Finite volume techniques are introduced and applied to the 

time-dependent Euler conservation equations in multiple dimensions.  Special 

considerations and improvements to computational efficiency are addressed.  

Finally, the developed multi-dimensional computational models are validated 

against the one-dimensional benchmark shock tube test, as well as mild 

cylindrical and spherical shock tests, and compared to published results. 

5.2. Implementation in Two Dimensions 

5.2.1. Initial Boundary Value Problem 

The two-dimensional initial boundary value problem for non-linear 

systems of hyperbolic conservation laws, assuming uniform flow in the z-direction 

is  

 (0)

: ( ) ( ) ,

: ( , , 0) ( , ).

t x yPDEs   

ICs   x  y  x y

+ + =

=

U F U G U 0

U U
 (5.1) 

Here (0)( , )x yU is a piecewise continuous distribution of initial data defined over 

the spatial domain [0, Lx] x [0, Ly] at t = 0.  Finally, in two dimensions, boundary 
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conditions are described along a line at each of the four boundaries using 

symmetric and transmissive boundaries, as described in the one-dimensional case.  

5.2.2. Discretization of the Euler Conservation Equations 

Discretization of the spatial and temporal computational domain [0, Lx] x 

[0, Ly] x [0, T] requires extension of the single-dimensional mesh in the y-

direction.  The spatial mesh is partitioned into I xJ computational cells of 

uniform area x yΔ Δ×  such that 

 
,

.

x

y

Lx
I
L

y
J

Δ

Δ

=

=
, (5.2) 

Each computational cell is bounded by faces i – 1/2 and i + 1/2 in the x-

direction, and faces j – 1/2 and j + 1/2 in the y-direction where 
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 (5.3) 

The center of each computational cell (i, j) is determined as 

 1 1( , ) (( ) , ( ) )
2 2i jx y i x j yΔ Δ= − − . (5.4) 

As in the single-dimensional case, the temporal domain is separated into n non-

uniform time steps which are determined, adaptively, as 
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max max

min ,
( ) ( )

cfl cfl
n n
i j 

C x C y
t  

S S
Δ Δ

Δ
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

. (5.5) 

Similarly, n
i max(S ) and n

j max(S )  are approximations for maximum wave speeds in the 

x and y directions, respectively, during time level n, and are based upon the 

material and sound speeds where 
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( ) max ,
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n n n
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n n n
y i j i j

S u a

S v a

= +

= +
 (5.6) 

The conditions established in (5.5) and (5.6), coupled with the CFL coefficient 

restriction defined in Chapter 4, predict waves in the solution of Riemann 

problems that remain spatially confined within cell limits defined in (5.3) for 

every time step.  This prediction correlates directly to solution stability in 

multiple dimensions. 

5.2.3. Dimension Splitting 

The dimension splitting technique permits resolving the two dimensional 

IBVP (5.1) as two single-dimensional IBVPs.  A simple version of this approach 

replaces (5.1) by the sequence of IVPs (Toro, 1999:541)  

 1/2
,

,

: ( ) 0,

:
t x t n

i jn
i j

PDEs   

ICs   
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U F U
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U
 (5.7) 

and 
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 1
,1/2

,

: ( ) 0,

:

t y t n
i jn

i j

PDEs   

ICs   

Δ +
+

⎫+ = ⎪⎪⎪⇒⎬⎪⎪⎪⎭

U G U
U

U
. (5.8) 

The solution 1/2
,
n
i j
+U  is obtained via (5.7) by solving J one-dimensional problems 

in the x-direction.  This solution provides initial conditions to subsequently solve 

(5.8) using I one-dimensional problems in the y-direction in order to, ultimately, 

determine 1
,
n
i j
+U .  In operator notation (5.7) - (5.8) may be written 

 1 ( ) ( )
, ,( )n t t n
i j i jY XΔ Δ+ =U U  (5.9) 

where ( )tX Δ and ( )tY Δ  represent approximate time step solution operators to the 

IBVP.  There is no specific purpose for applying the operators in the order 

described.  Accordingly, an equivalent scheme is 

 1 ( ) ( )
, ,( )n t t n
i j i jX YΔ Δ+ =U U  (5.10) 

 It can be shown that (5.9) and (5.10) are first-order accurate during each 

time step, given that the individual operators ( )tX Δ and ( )tY Δ are at least first-

order accurate (Toro, 1999:542).  Because the desired solution must be, spatially, 

second-order accurate, Toro presents two schemes that satisfy the accuracy 

requirement every other time step as  

 2 ( ) ( ) ( ) ( )
, ,( )n t t t t n
i j i jX Y Y XΔ Δ Δ Δ+ =U U  (5.11) 

and 

 2 ( ) ( ) ( ) ( )
, ,( )n t t t t n
i j i jY X X YΔ Δ Δ Δ+ =U U . (5.12) 
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 In practice, (5.11) is implemented over the interval 2[ , ]n nt t + based upon 

the following method.  Given initial conditions ,
n
i jU , boundary conditions are 

established as symmetric or transmissive and a stable time step is approximated 

via (5.5).  The first of two time steps begins with ( )tX Δ operating on ,
n
i jU .  

Specifically, in the x-direction, J one-dimensional Riemann problems are solved, 

fluxes are calculated at each computational boundary, and temporary variable 

solutions are updated in each cell as 1
,
n
i j
+U .  Next, boundary conditions are 

updated along the lines y = 0 and yy L=  and ( )tY Δ operates on 1
,
n
i j
+U by solving 

I one-dimensional problems in the y-direction, as described above.  At the 

conclusion of this first time step, solutions are analyzed against the CFL stability 

criteria.  If unstable solutions exist, interim solutions are discarded, the CFL 

coefficient and time step are re-calculated, and the time step is reset.  However, 

provided stable solutions exist, the second time step begins. 

 Procedures in the second time step are executed identically to those in the 

first step, with one exception.  Now ( )tY Δ operates on 1
,
n
i j
+U , yielding the 

temporary solution 2
,
n
i j
+U , upon which ( )tX Δ  subsequently operates.  This reversal 

of operations effectively eliminates the y-directional biased solution 1
,
n
i j
+U  present 

at the end of the first time step and produces the desired second-order accurate 

solution 2
,
n
i j
+U at the conclusion of the second time step.  Subject to solution 

stability verification, simulation time is advanced by 2 tΔ .  Finally, this second-
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order accurate scheme is executed, forward in time, until the desired solution 

time is reached. 

5.2.4. Special Considerations 

The dimension splitting technique facilitates solving the Euler 

conservation equations, in the x-direction, as 
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ρ ρ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥ + =⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

0 , (5.13) 

and in the y-direction 
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0 . (5.14) 

Note the first, second, and third equations in system (5.13) appear identical to 

the pure one-dimensional problem in the x-direction.  In this system, u represents 

the normal component of material velocity, while v represents the tangential, or 

shear, component.  Similarly, in system (5.14), v denotes the normal velocity 

component, while u symbolizes the tangential component.  Consideration of 

tangential velocities introduces corresponding tangential momentum terms and 

fluxes which appear in the fourth equations of both systems.  Furthermore, 
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inspection of the systems demonstrates these shear velocities contribute to total 

energy density determination as 

 2 2 21 ( )
2 1

pE u v wρ
γ

= + + +
−

. (5.15) 

Solutions to (5.13) and (5.14) that apply TVD flux limiter functions 

produce the dissipative wave structure of Figure 5.1. 

 Figure 5.1.  Two-Dimensional TVD Flux Limiter Wave Structure    

This arrangement dictates normal and tangential flux calculations, which are 

completed separately.  Recall from Chapter 4 that, in a single dimension, 

conserved variables fluxes are calculated by determining the weighted average 

state of primitive variables.  In the two-dimensional case, the weighted average 

states of density, normal velocity, and pressure are determined using equations 

(4.43) and (4.44).  These primitive variable weighted average states permit 

computation of fluxes for mass, normal momentum, and energy. 



 

76 

Calculation of the tangential velocity WAS and the corresponding 

tangential momentum flux and energy flux requires special treatment.  To 

determine the former requires application of the equations (Toro, 1999:550) 

 , 1/2 5, ,1 6, ,4T i LWAF T LWAF TV V Vβ β+ = +  (5.16) 

where TV represents the tangential velocity and the TVD weights are  

 5, 4 4(1 ( ))LWAF Sign cβ φ= +  (5.17) 

and  

 6, 4 4(1 ( ))LWAF Sign cβ φ= − . (5.18) 

The eigenvalue structure of solutions to (5.13) and (5.14) conveniently dictates 

4 2c c=  (Toro, 1999:548).  However, determination of 4φ is not as trivial.  Unlike 

weight limiter functions 1 2 3, , andφ φ φ , which depend on the density gradient 

across the local and upwind waves, 4 4( )rφ is calculated from tangential velocity 

gradients TVΔ as 

 4[ 1/2 ( ( )),4]
1/2,4

[ 1/2,4]

T i Sign c
i

T i

V
r

V

Δ

Δ
+ −

+
+

= . (5.19) 

Calculation of all components required to solve systems (5.13) and (5.14) is 

complete. 
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5.2.5. Sod Test in Two Dimensions 

Because the benchmark shock tube test consists of flows in a single 

direction, correct modeling of planar flows in two dimensions is readily verified.  

Accordingly, the two dimensional Sod test was executed over the square domain 

[0, 1m] x [0, 1m] consisting of 100 cells in the x and y directions and a 

diaphragm, positioned along the line x = 0m.  Initial conditions were established 

as   

 
3 2
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 x
x y

  x

⎧⎪ = <⎪⎪= ⎨⎪ = >⎪⎪⎩

W
W

W
(5.20) 

and solutions developed over the time interval t = [0, 0.25 sec].  The density 

profile at t = 0.25 sec is depicted below.  

 Figure 5.2.  Two-Dimensional Sod Density Profile at t = 0.25 sec 
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To ensure planar flows modeled in two dimensions are consistent with the 

one-dimensional Sod test density data from the two-dimensional test was 

extracted from the first set of cells in the y-direction.  These results are compared 

to the exact solution, as well as the second-order accurate solution obtained by 

the LWAF method in a single dimension, in Figure 5.3.  The second-order 

accurate solutions appear graphically identical for both dimensions. 

 Figure 5.3.  One and Two-Dimensional Sod Density Profiles at t = 0.25 sec 

5.2.6. Mild Cylindrical Shock Test 

To verify that the developed code correctly models flows in two 

dimensions, the Euler equations were solved over the square domain [0, 2m] x [0, 

2m] discretized as a computational mesh of 100 cells in the x and y directions.  

The initial conditions consisted of a circular region with radius 0.4m, centered at 
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(1,1), with primitive variables of LW and RW from (5.20) representing states 

inside and outside the circle, respectively (Toro, 1999:583).  Figure 5.4 shows the 

density profile at t = 0.25 sec.  Inspection of the profile indicates, as expected, a 

solution which exhibits a circular shock, contact surface, and rarefaction. 

 Figure 5.4.  Cylindrical Explosion Density Profile at t = 0.25 sec 

The density profile indicates the presence of potential numerical artifacts 

in the region between the rarefaction and contact discontinuity.  Accordingly, 

graphical resolution, in addition to circular symmetry, of solutions may be 

further examined through the contour plot in Figure 5.5.  Again, the artifacts 

appear in the region of concern, where the solutions appear to lack resolution.  

Doubling the cells in both directions from 100 to 200 reduced the oscillations in 
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the region of concern, as shown in Figure 5.6.  As expected, the graphical output 

shows fewer oscillations and better circular symmetry with mesh refinement.    

   Figure 5.5.  Cylindrical Explosion Density Contours at t = 0.25 sec 

The same test was conducted using a mesh of 400 cells in each direction.  

Doubling the cells again did not appear to significantly change solutions, either 

graphically or numerically.  Additionally, increasing the number of time steps by 

modifying the stability condition did not reduce the contour fluctuations and it’s 

likely the oscillations are an artifact associated with the numerical viscosity 

inherent in the LWAF scheme.  Recall TVD weight limiting is analogous to 

artificial viscosity methods.  Because the two-dimensional code applies weight 
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limiting at every cell interface at every time step, it’s conceivable the artificial 

viscosity manifests itself, as time progresses, as numerical error. 

Figure 5.6.  Cylindrical Explosion Density Profile Mesh Refinement 

As an additional verification of circular symmetry, densities were 

compared along a line extending, radially, one meter outward from (1,1) at angles 

of 0, / 4, /2, 3 /4, andθ π π π π= , as measured from the x-axis.  Figure 5.7 shows 

the density profiles along each of these lines and indicates nearly identical values 

for each angle. 

Based on these analyses, I conclude two-dimensional flows are properly 

modeled using dimension splitting techniques.    
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 Figure 5.7.  Mild Cylindrical Explosion Density Comparison at t = 0.25 sec 

5.3. Implementation in Three Dimensions 

5.3.1. Initial Boundary Value Problem 

The three dimensional initial boundary value problem for non-linear 

systems of hyperbolic conservation laws is  

 (0)

: ( ) ( ) ( ) ,

: ( , , , 0) ( , , ).

t x y zPDEs   

ICs   x y z  x y z

+ + + =

=

U F U G U H U 0

U U
 (5.21) 

Here (0)( , , )x y zU is a piecewise continuous distribution of initial data defined over 

the spatial domain [0, Lx] x [0, Ly] x [0, Lz] at t = 0.  Lastly, in three dimensions, 

boundary conditions are described along a plane at each of the six boundaries 
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using symmetric and transmissive boundary conditions, as described in the one-

dimensional case. 

5.3.2. Discretization of the Euler Conservation Equations 

Discretization of the spatial and temporal computational domain [0, Lx] x 

[0, Ly] x [0, Lz] x [0, T] requires extension of the two-dimensional mesh in the z-

direction.  The spatial mesh is partitioned into I xJ xK computational cells of 

uniform volume  x y zΔ Δ Δ× ×  such that 

 

,

,

.

x

y

z
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Δ

Δ

=

=

=

 (5.22) 

Each computational cell is bounded by six faces i – 1/2, i + 1/2, j – 1/2, j + 1/2,  

k – 1/2, k + 1/2 in the x, y, and z directions, respectively, where 
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 (5.23) 

The center of each computational cell (i, j, k) is determined as  

 1 1 1( , , ) (( ) , ( ) , ( ) )
2 2 2i j kx y z i x j y k zΔ Δ Δ= − − − . (5.24) 
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As in the one and two-dimensional cases, the temporal domain is separated into n 

non-uniform, adaptively determined time steps where 

 
max max max

min , ,
( ) ( ) ( )

cfl cfl cfl
n n n
i j k

C x C y C z
t  

S S S
Δ Δ Δ

Δ
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

. (5.25) 

max( )n
iS , max( )n

jS , and max( )n
kS are approximations for maximum wave speeds in 

the x, y, and z directions, respectively, during time level n, and are based upon 

the material and sound speeds such that 

 

{ }
{ }
{ }

max , , , ,

max , , , ,

max , , , ,

( ) max ,

( ) max ,

( ) max

n n n
i i j k i j k

n n n
y i j k i j k

n n n
z i j k i j k

S u a

S v a

S w a

= +

= +

= +

 (5.26) 

Finally, as in the one and two-dimensional models, the conditions set forth 

ultimately predict stable solutions across the entire computational domain during 

each time step. 

5.3.3. Dimension Splitting 

The splitting techniques executed in three dimensions are analogous to the 

two-dimensional procedures. Equation (5.21) is resolved as three IBVPs (Toro, 

1999:543) 

 1/3
, ,

, ,

: ( ) ,

:
t x t n

i j kn
i j k

PDEs   

ICs   
Δ +

⎫+ = ⎪⎪⎪⇒⎬⎪⎪⎪⎭

U F U 0
U

U
, (5.27) 
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 2/3
, ,1/3

, ,

: ( ) ,

:

t y t n
i j kn

i j k

PDEs   

ICs   

Δ +
+
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U G U 0
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and  

 1
, ,2/3

, ,

: ( ) ,

:

t z t n
i j kn

i j k

PDEs   

ICs   

Δ +
+

⎫+ = ⎪⎪⎪⇒⎬⎪⎪⎪⎭

U H U 0
U

U
 (5.29) 

which may be summarized, in operator notation, as 

 1 ( ) ( ) ( )
, , , ,( )n t t t n
i j k i j kZ Y XΔ Δ Δ+ =U U . (5.30) 

As in the two-dimensional case, analysis of this method indicates first-order 

accuracy in time.  However, second-order spatial accuracy is achieved, every 

other time step, by the method 

 2 ( ) ( ) ( ) ( ) ( ) ( )
, , , ,( )n t t t t t t n
i j k i j kX Y Z Z Y XΔ Δ Δ Δ Δ Δ+ =U U . (5.31) 

In practice, (5.31) is implemented over the interval 2[ , ]n nt t + based upon the 

following method.  Given initial conditions , ,
n
i j kU , boundary conditions are 

established as symmetric or transmissive and a stable time step is approximated 

via (5.25).  The first of two time steps begins with ( )tX Δ  operating on , ,
n
i j kU .  

Specifically, in the x-direction, J x K one-dimensional Riemann problems are 

solved, fluxes are calculated at each computational boundary, and temporary 

variable solutions are updated in each cell as 1
, ,
n
i j k
+U .  Next, boundary conditions 

are updated along the planes y = 0 and yy L=  and ( )tY Δ operates on 1
, ,
n
i j k
+U  by 
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solving I xK one-dimensional problems in the y-direction, as described above, 

producing updated cell solutions 
1

, ,
n
i j k
+

U .  Before solving problems in the z-

direction, boundary conditions are applied along the planes z = 0 and zz L= .  

At last, ( )tZ Δ operates on 
1

, ,
n
i j k
+

U  by solving I xJ one-dimensional problems in the 

z-direction.  At the conclusion of this first time step, solutions are analyzed 

against the CFL stability criteria.  If any CFL criterion is violated, then: the 

interim solutions are discarded; the CFL coefficient and time step are re-

calculated; and the time step is reset.  However, provided stable solutions prevail, 

the second time step is executed over solution 1
, ,
n
i j k
+U , with time step operator 

ordering reversed to eliminate directional bias.  As in the two-dimensional case, 

subject to stability verification of 2
, ,
n
i j k
+U , simulation time is advanced by 2 tΔ and 

the second-order accurate scheme is repeated until the desired solution time is 

achieved. 

5.3.4. Special Considerations 

Three-dimensional splitting facilitates solving the Euler conservation 

equations, in the x, y, and z directions, as  

 

2

( )

t x

u

u pu

E E u p
v vu
w wu

ρρ
ρρ

ρ ρ
ρ ρ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 , (5.32) 
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0 , (5.33) 

and 
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t z

w

w pw

E E w p
u uw
v vw

ρρ
ρρ

ρ ρ
ρ ρ
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0 . (5.34) 

As in the two-dimensional case, tangential velocities, their associated momentum 

fluxes, and the energy flux require special consideration.  Within system (5.32), u 

represents the normal component of material velocity, while v and w represents 

the tangential, or shear, components.  The normal velocity component in system 

(5.33) is v while u and w signify tangential components.  Finally, in (5.34), w 

denotes the normal velocity component, while u and v correspond to tangential 

components.   

 Solutions to the aforementioned systems of equations that apply TVD flux 

limiter functions produce the dissipative wave structure of  

Figure 5.8.  As in the two-dimensional case, normal and tangential flux 

calculations are determined separately.  Similarly, weighted average states of 

density, normal velocity, and 
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 Figure 5.8.  Three-Dimensional TVD Flux Limiter Wave Structure    

pressure are determined using equations (4.43) and (4.44), and their 

corresponding fluxes are subsequently computed.  Calculation of the tangential 

velocity weighted average states and their resultant tangential momentum fluxes 

is also analogous to the two-dimensional case.  Specifically, if 1TV and 2TV denote 

the two tangential velocity components, then the weighted average states of these 

elements are calculated as 

 
1, 1/2 5, 1,1 6, 1,4

2, 1/2 7, 2,1 8, 2,4

T i LWAF T LWAF T

T i LWAF T LWAF T

V V V

V V V

β β

β β

+

+

= +

= +
 (5.35) 

where 5,LWAFβ  and 6,LWAFβ are given by equations (5.17) and (5.18) and 

 
7, 5 5

8, 5 5

(1 ( )),

(1 ( )).

LWAF

LWAF

Sign c

Sign c

β φ

β φ

= +

= −
 (5.36)  
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Conveniently, the eigenvalue structure of solutions to (5.32) – (5.34) dictates 

5 4 2c c c= =  and, like 4φ , the weight limiter function 5φ  is calculated from its 

tangential velocity gradients 2TVΔ as in equation (5.19).  Hence, calculation of all 

components required to solve the three-dimensional time dependent Euler 

conservation equations is complete. 

5.3.5. Sod Test in Three Dimensions 

The benchmark shock tube test is re-visited here for the final time, to 

verify correct modeling of planar flows in three dimensions.  The three 

dimensional Sod test was executed over the cubic domain [0, 1m] x [0, 1m] x [0, 

1m] consisting of 100 cells in the x, y, and z directions and a diaphragm, 

positioned along the plane x = 0.5 m.  Initial conditions were established as  

 
3 2

3 2

(1.000 kg/m ,0.0m/sec, 0.0m/sec, 0.0m/sec,1.0N/m ) 0.5m,
( , , ,0)

(0.125kg/m ,0.0m/sec, 0.0m/sec, 0.0m/sec,0.1N/m ) 0.5m.

L

R

  x
x y z

  x

⎧⎪ = <⎪⎪=⎨⎪ = >⎪⎪⎩

W
W

W
(5.37) 

and solutions developed over the time interval t = [0, 0.25 sec].  The density 

profile at t = 0.25 sec, through the plane z = 0.5m is depicted in Figure 5.9 and 

is consistent with expected results.  As in the two-dimensional case, correct 

modeling of planar flows was verified by comparing data extracted from the first 

set of cells in the y-direction against the exact solution and the second-order 

accurate solution obtained by the LWAF method in a single dimension.  Again, 

the second-order accurate solutions appeared graphically identical for both the 
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one and three-dimensional cases, and I conclude that the developed 

computational model accurately models planar flows. 

 

Figure 5.9.  Three-Dimensional Sod Density Profile (z = 0.5m) at t = 0.25 sec 

5.3.6. Mild Spherical Shock Test 

To verify that the developed code correctly models flows in three dimensions, the 

Euler equations were solved over the cubic domain [0, 2m] x [0, 2m] x [0, 2m] 

discretized as a computational mesh of 100 cells in the x, y, and z directions.  

Initial conditions consisted of a spherical region with radius 0.4m, centered at 

(1,1,1), with primitive variables of LW and RW from (5.37) representing states 

inside and outside the sphere, respectively (Toro, 1999:587).  Figure 5.10 shows 
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the density profile through the plane z = 1 m at t = 0.25 sec and indicates, as 

expected, a solution which exhibits a spherical shock, contact surface, and 

rarefaction.   

Figure 5.10.  Spherical Explosion Density Profile (z = 1m) at t = 0.25 sec 

As in the two-dimensional case, the density profile indicates the presence 

of potential numerical artifacts in the region between the rarefaction and contact 

discontinuity.  Accordingly, a similar analysis of contour plots and mesh 

refinement was conducted.  Increasing cells in all three directions reduced the 

oscillations in the region of concern and yielded improved circular symmetry.  
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Furthermore, densities compared along a line extending, radially, one meter 

outward from (1,1,1), in the plane z = 1 m, at angles of 

0, / 4, /2, 3 /4, andθ π π π π= , as measured from the x-axis.  Figure 5.11 shows 

the density profiles along each of these lines and indicates nearly identical values 

for each angle.   

 Figure 5.11.  Spherical Explosion Density Comparison (z = 1) at t = 0.25 sec 

To confirm spherical symmetry, similar analyses were conducted through 

planes y = 1 m and x = 1 m.  Figure 5.12 and Figure 5.13 show the density 

profiles through the planes y = 1 m and x = 1 m, respectively, at t = 0.25 sec 

and are consistent with the solution presented in Figure 5.10.  Densities were 

compared along a line extending, radially, one meter outward from (1,1,1), in the 

plane y = 1 m, at angles 0, / 4, /2, 3 / 4, andφ π π π π= , as measured from the x-

axis.  Figure 5.14 shows these density profiles along each of these lines and 
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indicates nearly identical values for each angle.  Finally, Figure 5.15 depicts 

identical densities plotted along a one meter radial line, extended from (1,1,1), in 

the plane x = 1 m, at angles 0, / 4, /2, 3 /4, andΩ π π π π= , measured from the 

y-axis.  Based on these analyses, I conclude multi-dimensional flows are properly 

modeled using dimension splitting techniques.  
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Figure 5.12.  Spherical Explosion Density Profile (y = 1m) at t = 0.25 sec 

  Figure 5.13.  Spherical Explosion Density Profile (x = 1m) at t = 0.25 sec 



 

95 

Figure 5.14.  Spherical Explosion Density Comparison (y = 1m) at t = 0.25 sec 

Figure 5.15.  Spherical Explosion Density Comparison (x = 1m) at t = 0.25 sec   

.  
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6. Conclusion 

The principal endeavor of this research was development of a three-

dimensional hydrodynamic shock code to solve the Euler conservation equations, 

while the secondary objective included applying the developed code to model air 

blast propagation. 

To that end, a one-dimensional, second-order accurate computational 

model was methodically developed, tested, and validated.  Godunov’s scheme 

executed with exact and approximate Riemann solvers, and applied to varying 

shock tube tests, accurately predicted wave structure and locations.  Although 

both solvers yielded comparable accuracy, the adaptive, approximate solver 

improved computational efficiency by nearly 36%.  Application of E.F. Toro’s 

weighted average flux method produced second-order accuracy, but introduced 

false fluctuations near discontinuous regions.  These oscillations were effectively 

reduced via TVD weight limiting techniques, where van Leer’s limiter most 

favorably controlled behavior in the presence of shocks.  The fully developed 

second-order accurate model was tested and verified against the ARL 57 cm 

shock tube test, and agreed with the published experimental data within 5.9%. 

Following validation in a single dimension, the developed code was 

extended into two and three dimensions.  During both implementations, output 

from the multi-dimensional models was compared against Sod’s shock test, to 

verify accurate modeling of planar flows, and evaluated against mild cylindrical 
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and spherical shock tests, presented by Toro, to confirm correct flow 

representation in two and three dimensions.   

The end result of this research effort is a fully developed three-dimensional 

air blast propagation model that may be implemented, using parallel 

computations, to permit a more accurate and efficient exploration of air blast 

propagation. 
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